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Abstract
Linux kernel VPNs suffer from severe performance degra-
dation under high load due to execution order inversion
(EoI ), a phenomenon where packet recombination functions
preempt earlier pipeline stages. This leads to severe latency
spikes and throughput reductions. We investigate kernel
threads and workqueues as alternative kernel asynchronous
APIs to address these limitations, achieving up to a 4.7×
increase in throughput while reducing tail latency by 65%.
These results demonstrate the importance of selecting appro-
priate kernel asynchronous APIs for kernel-level network
applications.

CCS Concepts
•General and reference→General conference proceed-
ings; • Networks→ Network performance evaluation;
• Software and its engineering→ Scheduling; Software
performance.

Keywords
Operating System, WireGuard, VPN, Asynchronous Execu-
tion, Kernel Threads, Workqueues

1 Introduction
Millions of users rely daily on virtual private networks (VPNs)
for privacy and security [13, 16, 17]. WireGuard [4] is a VPN
protocol that is gaining significant traction. It is implemented
as a Linux kernel module to improve execution speed and
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is designed to be multithreaded, taking advantage of mul-
ticore architectures to handle high loads [3, 4]. In practice,
however, we find that, when serving a high number of users,
the performance of the kernel WireGuard falters. We con-
sider a scenario where up to 1,000 clients each generate 25
Mbps of upload (received) and download (transmitted)1 traf-
fic to a WireGuard server equipped with a 25 Gbps NIC and
an 18-core CPU. As shown in Fig. 1a, the transmit traffic
throughput scales nearly linearly up to 1,000 clients, reach-
ing 22 Gbps. However, the received traffic throughput is only
4.8 Gbps for 800 to 1,000 clients, which amounts to only 19.2%
of the NIC capacity.
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Figure 1: Network throughput and per-core CPU usage
of WireGuard when serving up to 1,000 clients, each
generating 25 Mbps in upload and in download.

Wefind that the performance issue in the reception pipeline
stems from the use of kernel asynchronous APIs (hereafter
referred to as KAAPI ). In WireGuard, ingress packet pro-
cessing involves three main steps: (i) decapsulation, (ii) de-
cryption, and (iii) generic receive offload (GRO), which ag-
gregates packet fragments. In Linux, GRO is executed in a
high-priority software interrupt context. As a result, it pre-
empts the decryption step in 8% of calls—frequent enough to
1Traffic uploaded/downloaded by the clients is received/transmitted by the
server.
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Figure 2: Distribution of the network card interrupts
across all CPU cores

severely disrupt packet batching, leading to a mismatch be-
tween the logical processing order and the actual execution
order.

This mismatch causes what we refer to as execution order
inversion (hereafter referred to as EoI 2), where later pipeline
stages run before earlier ones have completed. EoI has two
significant consequences. First, GRO software interrupts are
scheduled before any decrypted packets are ready, result-
ing in immediate aborts and wasted CPU cycles. Second,
when decrypted packets are available, GRO processes them
in large batches, which takes longer and delays subsequent
interrupts. When a core falls behind due to processing a
large GRO batch, it accumulates further interrupts, which
are serviced later than those on less-busy cores. This allows
decrypted packets to pile up unevenly across cores, creating
even more work for the overloaded core. Over time, this
feedback loop leads to significant load imbalance: busy cores
become overwhelmed while others remain underutilized, ul-
timately degrading overall network throughput (see Fig. 1b).
The distribution of receive (RX) interrupts across cores

(Fig. 2) reveals a puzzling discrepancy between interrupt load
and CPU saturation. While core 11 receives approximately
twice as many RX interrupts as other cores—a moderate im-
balance typical of hash-based distribution—this alone cannot
explain the severe CPU utilization patterns observed. Cru-
cially, core 18 saturates at 100% softirq utilization (Fig. 1b)
despite receiving fewer interrupts than core 11. This coun-
terintuitive observation suggests that RX interrupt distri-
bution, while imbalanced, is not the primary driver of the
performance bottleneck. The disproportionate CPU satura-
tion relative to the interrupt count indicates that other factors
amplify the initial imbalance into the severe degradation we
observe. Consequently, simple interrupt redistribution may
not resolve the performance bottleneck.
To address this problem, we propose to make the GRO

functions run with the same priority as the other tasks of
the pipeline, so that they do not preempt other WireGuard
tasks. To this end, we explore execution contexts other than

2EoI is distinct from "End of Interruption", as these are two different notions.

software interrupts that could be used for GRO. In the Linux
kernel, there are two KAAPI that can achieve this: kernel
threads (kthreads) that are already supported in the GRO
API and workqueues that are not.

Our results show that for WireGuard’s GRO processing,
kthreads provide a 4× throughput increase and 65% latency
reduction, while workqueues deliver 4.7× higher throughput
and 46% lower latency under high-load reception. Transmis-
sion performance remains unaffected in both cases. Although
kthreads reduce latency more effectively, they achieve lower
throughput due to increased scheduling overhead resulting
from the use of more threads.

This paper makes the following contributions:
• We show that EoI creates load imbalance and severely
degrades WireGuard performance.

• We propose a patch to run GRO functions in work-
queues, and enable WireGuard to use this feature.

• We improve the throughput of WireGuard by up to
4.7× and the tail latency by up to 50%.

2 Background
We provide an overview of kernel multiprocessing APIs, and
the architecture and implementation choices of WireGuard.

2.1 Linux Kernel Asynchronous APIs
The Linux kernel provides several APIs and mechanisms to
enable asynchrony: software interrupts (softirqs), kthreads,
and workqueues.
Softirqs. The Linux kernel handles softirqs asynchronously
using specialized threads called ksoftirqd. Softirqs can be
used in networkingwhen a large volume of incoming packets
has to be processed, and each packet generates a network in-
terrupt. The NAPI API enables the kernel to mask interrupts
for a specified duration and execute interrupt handlers asyn-
chronously. Using NAPI involves defining a napi_struct
structure coupled with a polling function. napi_struct in-
stances are placed in a per-core queue called softnet_data.
When software interrupts are raised, the ksoftirqd threads
execute the polling functions of the napi_struct in the
softnet_data.
kthreads. A kthread is a data structure managed by the
kernel that can be initialized with a function defining the
tasks the thread will perform. A kthread can be created to
run the asynchronous code. The kernel scheduler oversees
the execution of kthreads. Kthreads are scheduled like any
other kernel thread, subject to the scheduler’s fairness and
load balancing policies.
Workqueues. A workqueue is a Linux kernel mechanism
that enables asynchronous task execution through a pool
of kthreads called workers, executing functions called works
stored in a workqueue. It allows tasks to be distributed across
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Figure 3: Execution contexts of the functions of Wire-
Guard.

multiple CPU cores. Workqueues are analogous to the soft-
ware interrupt mechanism, with workers corresponding to
ksoftirqd threads, workqueues to softnet_data, and work
items to napi_struct.

2.2 WireGuard Internals
WireGuard creates encrypted tunnels betweenmultiple peers.
Each WireGuard peer has two pipelines (Fig. 3): one to send
packets (Fig. 3a) and one to receive packets (Fig. 3b).
In the transmission pipeline, packets are segmented, en-

crypted, and encapsulated. Encryption functions run asyn-
chronously inworkqueueswith one CPU-affineworker thread
per core, while encapsulation uses one work item per peer
that can be scheduled on any core.

In the reception pipeline, packets are de-encapsulated, de-
crypted, and recombined. Decryption also uses workqueues
for asynchronous processing. After decryption, packets are
recombined using the kernel’s GRO mechanism, with each
peer having its own GRO handler. WireGuard leverages ex-
isting kernel APIs for GRO within the NAPI subsystem. GRO
functions are thus executed by default in the softirq context.

3 Execution Order Inversion (EoI )
This section introduces the EoI bottleneck, how it arises, and
how it degrades WireGuard performance.

3.1 What is EoI?
EoI occurs when the priorities of execution contexts conflict
with the intended function execution sequence. Consider a
system with a sequence of functions 𝐹1, 𝐹2, . . . , 𝐹𝑚 , where
each function 𝐹𝑖 must execute before 𝐹 𝑗 , with 𝑖 < 𝑗 . Each
function runs within an execution context 𝐺𝑖 , with an as-
sociated priority 𝑝 (𝐺𝑖 ). EoI arises when, for two functions
𝐹𝑖 and 𝐹 𝑗 with 𝑖 < 𝑗 , the priority 𝑝 (𝐺𝑖 ) < 𝑝 (𝐺 𝑗 ), allowing a
later function to preempt an earlier one prematurely. This
conflict disrupts the required execution order, introducing
inefficiencies.

Decryption GRO

workqueue softirq

Data dependency

Priority of contexts

Figure 4: Pipeline Order inversion in WireGuard

3.2 How EoI Affects WireGuard
In the reception pipeline of WireGuard (Fig. 3b), decryption
functions are dispatched to workqueues with normal priority,
while GRO handlers are executed in ksoftirqd, which has a
higher priority. This priority mismatch results in EoI (Fig. 4).
Specifically, when packets are dequeued from encryp-

tion/decryption queues, WireGuard uses spin_lock_bh and
spin_unlock_bh. The latter re-enables bottom halves, which
immediately trigger the execution of software interrupts
such as NAPI pollers. As a result, NAPI pollers may run
before decryption has completed, often finding few or no de-
crypted packets to process, hence preventing efficient batch-
ing. The transmission pipeline does not exhibit this issue, as
it does not have such mismatches.

3.3 Impact on CPU Utilization
Under high upload workloads, EoI results in severe CPU core
imbalance. Measurements show one core reaching up to 94%
utilization, while others remain around 20% (Fig. 1b).

This happens because most NAPI pollers execute too early,
before decryption workers finish, so they return after pro-
cessing few packets. Meanwhile, some NAPI pollers are de-
layed by competing threads or pollers for other network
devices. These delayed pollers run later and find a backlog
of decrypted packets, processing significantly more data. On
average, most cores process 1 packet per NAPI invocation.
However, the overloaded core processes 5 packets per invo-
cation, a 5× increase in per-invocation runtime.

NAPI pollers are distributed across CPUs without regard
to utilization. Specifically, decryption workers are scheduled
on different cores in a round-robin manner, independently of
the system’s current CPU load3. When a decryption worker
completes its task, it schedules the NAPI poller for the corre-
sponding peer4. This is done via a call to napi_schedule(),
which enqueues the poller on the CPU where the worker
is running5. Since worker placement does not account for
per-core load, heavily loaded cores can continue receiving

3wg_queue_enqueue_per_device_and_peer: https://elixir.bootlin.com/
linux/v6.1.147/source/drivers/net/wireguard/queueing.c#L93
4wg_packet_decrypt_worker: https://elixir.bootlin.com/linux/v6.1.147/
source/drivers/net/wireguard/receive.c#L408
5Pollers are scheduled via wg_queue_enqueue_per_peer_rx, which
calls napi_schedule, assigning them to the current CPU via
__napi_schedulehttps://elixir.bootlin.com/linux/v6.1.147/source/net/
core/dev.c#L6336
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Figure 5: Effect of EoI on throughput and latency.

new pollers. In contrast, other cores remain significantly un-
derutilized, resulting in persistent load imbalance, primarily
when GRO processing is concentrated on a single CPU.

3.4 Impact on Pipeline Processing Speed
The increased per-invocation runtime of EoI also degrades
pipeline throughput and increases tail latency. Consider a
pipeline with three functions 𝐹1, 𝐹2, and 𝐹3, each taking one
unit of time to execute (Fig. 5). In the ideal case, the pipeline
processes one job in 3 time units and two jobs in 6 time units.
However, with EoI , if, for example, 𝐹2 runs before 𝐹3, the
system incurs additional delay, and the total time to process
one job increases to 3+𝜖 , where 𝜖 ≤ 1 captures the overhead
of disordered execution. Over extended runs, this inversion
reduces pipeline throughput (fewer jobs completed per unit
time) and increases processing tail latency.

3.5 EoI in Other Applications
While our analysis focuses on WireGuard with VPN traffic
handling 1,000 distinct client flows, EoI represents a broader
design consideration for asynchronous pipelined systems.
EoI can occur in any system where pipeline stages run in
different priority contexts. For example, storage stacks or net-
work middleware that mix softirq and workqueue processing
may exhibit similar performance degradation.

4 Using Alternative KAAPI in WireGuard
EoI arises because GRO tasks are executed in software inter-
rupt context, which has a higher priority than the execution
context of the decryption and de-encapsulation functions.
We thus investigate KAAPI alternatives to the software inter-
rupt context for GRO tasks. An alternative should (1) elimi-
nate EoI by preserving the correct execution order across the
pipeline stages, (2) allow high-frequency packet processing,
(3) improve upload performance, and (4) maintain good per-
formance on download. For this, we look at KAAPIs that have
the same priority as the execution context of the decryption
and de-encapsulation functions. With the same priority for
all pipeline functions, EoI should not occur. The alternative
KAAPIs we consider are kthreads and workqueues, described
in Section 2.1. We implement them in the NAPI subsystem,

allowing them to be used to execute NAPI pollers.We present
the modifications for kthreads and workqueues.

4.1 Running NAPI pollers in kthreads
TheNAPI subsystem allows pollers to be executed in kthreads,
by writing 1 to /sys/class/net/<iface_name>/threaded,
where iface_name is the name of the network interface
whose NAPI pollers should be threaded.

4.2 Running NAPI pollers in workqueues
The NAPI subsystem does not natively support workqueues.
To allow this, in the kernel, we encapsulate the napi_struct
within a work_struct and leverage the workqueue infras-
tructure to decouple NAPI processing from the KAAPI sup-
ported by NAPI. These changes impact the NAPI initializa-
tion step and the NAPI scheduling step.
Initialization. The NAPI initialization step must bridge the
gap between the napi_struct structure used by NAPI and
the work_struct structure used by the workqueues. To this
end, we replace the original netif_napi_add initialization
function with a new function netif_napi_add_wq and wrap
the napi_struct in a work_struct. netif_napi_add_wq
then establishes the associations between the napi_struct,
the work_struct, and the workqueue. During the device
setup phase, dev_run_in_workqueue is called to enable the
workqueue mode for every attached NAPI poller.
Scheduling. When napi_schedule is called, and the NAPI
instance is in workqueue mode, instead of enqueuing the
napi_struct into the softnet data, the queue_work_on func-
tion is invoked. This function queues the associated work_-
struct onto the workqueue assigned to the relevant CPU
core. The kernel’s workqueue subsystem then takes over,
executing these tasks using a shared pool of worker threads.
These changes add 136 lines of code (LoCs) to the NAPI sub-
system and 55 LoCs to WireGuard. These changes do not
modify the Linux kernel’s behavior in the sense that they
only enable NAPI pollers to run in other contexts. So, appli-
cations using the default execution context of NAPI handlers
are not impacted.

4.3 Kthread vs Workqueues
kthreads are easy to deploy since they require no code modi-
fications and can be enabled by writing to a configuration
file (Section 4.1). However, this approach may create scal-
ability challenges. The one-thread-per-client model means
that supporting 1,000 clients requires managing more than
1,000 individual threads. This design leads to excessive con-
text switching and frequent thread migrations between CPU
cores, which consumes substantial processing resources. To
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address the potential scheduling overhead from thread mi-
grations, we also evaluate a version of kthreads where each
thread is pinned to a specific CPU core.

Workqueues are more complex to deploy because they re-
quire modifications to both the kernel and WireGuard. How-
ever, they offer a different architectural approach through
their fixed-thread design. They maintain one worker thread
per CPU core regardless of client count. As the number of
clients increases, the number of work items in the queues
also increases, while the thread count remains constant. This
design reduces scheduler overhead and avoids the costly con-
text switches associated with the kernel thread approach.

4.4 Impact on the System
In both cases, whether using kthreads or workqueues, only
the NAPI pollers of WireGuard are affected. GRO pollers ini-
tialized by other driverswill continue to run in the ksoftirqd
context. As a result, our approach, which executes Wire-
Guard’s GRO pollers in a separate context, does not interfere
with those of other drivers. Using kthreads can introduce
system overhead. Specifically, one kthread is created per
peer when a VPN interface is brought up. On servers with
many clients, this can lead to a large number of threads,
potentially overloading the scheduler and degrading the per-
formance of other applications. In contrast, workqueues are
more lightweight. They rely on a fixed number of kernel
threads, thereby avoiding the scalability issues associated
with kthreads and imposing less strain on the scheduling
subsystem.

5 Evaluation
The evaluation addresses the following questions: (1) What is
the performance ofWireGuardwith kthreads andworkqueues,
and how does it compare with the current implementation
of WireGuard? (2) Which is better, workqueues or kthreads,
and why? (3) Do the solutions also impact transmission?

5.1 Experimental Setup
We describe the test setup and the different metrics used.
Hardware and Software. We use 21 identical machines
with an Intel Xeon Gold 5220 CPU with 18 physical cores,
with 10 machines for clients, 10 machines as targets, and one
machine as the VPN server, all interconnected on the same
switch [8]. Each machine has a 25𝐺𝑏𝑝𝑠 Mellanox ConnectX-
4 NIC, with RSS [2, 9, 14] enabled by default.The full-duplex
mode is activated on the NIC. The NIC driver is mlx5_core
version 5.0. All machines run on Debian 12 using Linux
kernel version 6.1. Since WireGuard is integrated directly
into the kernel, the WireGuard version corresponds to what
is included in Linux kernel v6.1. We use: (1) iPerf3 (v3.9)
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Figure 6: Per core reception CPU usage on 1,000 clients

[5] to generate network traffic, and (2) netperf to evaluate
the network latency.
Metrics. We measure the median value of network through-
put on the server using sysstat [6] by capturing the for-
warded throughput on the network interface in Gbps over 60
seconds. Latency is measured with the TCP_RR benchmark
from netperf, and we report the 99𝑡ℎ percentile latency.
Total and per-core CPU usage are measured using sysstat.
We run each experiment five times.

5.2 Improving the CPU Usage
To evaluate the impact of kthreads and workqueues on the
server CPU usage, we analyze the overall CPU utilization as
a function of the forwarded throughput and the load distri-
bution across the server’s cores for 1,000 clients’ traffic.
Per-core CPU usage. Fig. 6 shows the load per core when
the server manages 1,000 clients in reception. Fig. 6a shows
the load for the baseline version. The load is identical for both
kthread and workqueue implementations (Fig. 6b). When
receiving traffic from 1,000 clients, the baseline shows poor
CPU load distribution, with one core at 94% (essentially for
softirq) and others at 20%. In contrast, both the kthread and
workqueue versions achieve better balance, with up to 95%
load across all cores. As GRO is no longer run in softirq, the
corresponding CPU usage is only accounted for as kernel
CPU time. For transmission, we observe an even distribution
for all configurations, similar to the workqueue upload case.
Total CPU usage. Fig. 7 compares the total CPU usage
of the WireGuard server when serving different numbers
of clients using four implementations: the baseline using
softirqs, workqueues, kthreads, and kthreads pinned to spe-
cific cores (threaded-pinned). Fig. 7a and 7b present results
for scenarios where the server receives and transmits net-
work traffic, respectively. Lower CPUusage and higher through-
put indicate better performance, with the optimal configura-
tion represented by the points at the bottom right. For recep-
tion, the CPU usage of the threaded versions is higher than
that of the workqueue version for the same throughput. Thus,
kthread-based configurations require more CPU resources
to achieve comparable performance. Using workqueues re-
sults in better CPU efficiency than using kthreads or the
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Figure 7: Total CPU usage with up to 1,000 clients
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Figure 8: Forwarded throughput for varying number
of clients.

baseline. For the transmission, while all variants show linear
increases in CPU utilization, the workqueue and baseline
configurations achieve the same results. However, kthreads
use more CPU for less throughput. Overall, the workqueue
configuration is the most efficient, balancing CPU usage and
throughput, especially under high loads.

5.3 Network Performance
Network Throughput. Fig. 8 presents the throughput of
WireGuard when serving up to 1,000 clients in reception
and transmission. For reception, the baseline throughput
increases linearly to 500 clients, peaking at 11.7 Gbps, but
declines sharply to 4.5 Gbps at 1,000 clients. kthread versions
maintain throughput beyond 500 clients, reaching 14.4 Gbps,
outperforming the baseline by up to 1.8×; pinning threads
gives no advantage. The workqueue version reaches 18 Gbps
at 1,000 clients, thus a 4× improvement. For transmission, at
1,000 clients, the baseline and workqueuemaintain 21.5 Gbps,
while kthreads’ throughput drops slightly to 20.2 Gbps.
Network Latency Fig. 9 presents the latency of the Wire-
Guard clients when using four implementations of the Wire-
Guard server. Fig. 9a and 9b present results for scenarios
where clients primarily upload (the server receives the traffic)
and download (the server transmits the traffic), respectively.
The baseline shows a tail latency of 13.7 ms when clients
perform upload. kthreads significantly improve this latency,
dropping to 5.6 ms without pinning and further to 4.8 ms
with pinning (65% improvement). The workqueue improves
latency to 7.3 ms (46.7% improvement). For client download,
latency remains similar across all variants, increasing slightly
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Figure 9: Tail (99𝑡ℎ) latency for varying number of
clients.

up to 500 clients (0.6 to 0.7 ms) and rising more noticeably
for larger loads: 2.8 ms for baseline, 2.7 ms for kthreads and
workqueues. The best result is achieved with pinned threads,
2 ms.

6 Other Kernel: WireGuard in FreeBSD
We also evaluate WireGuard on FreeBSD v14.2 using a setup
similar to Section 5, with RSS enabled. Like Linux, FreeBSD
WireGuard uses two pipelines, but all functions run in task
queue groups, a KAAPI similar to Linux workqueues with
uniform priority. As a result, EoI does not occur. In server
reception, WireGuard reaches 14.5 Gbps for 1,000 clients,
matching the performance of threaded NAPI on Linux. La-
tency is also comparable. However, for server transmission,
performance is lower than Linux WireGuard, with 13.9 Gbps
throughput and 13.1 ms latency. Using DTrace [7], we at-
tribute this to lock contention: task queue group locking
accounts for 36.9% of total CPU usage. While outside the
scope of this work, this is a potential area for future improve-
ment.

7 Related Work
EoI shares similarities with two known issues. Receive live-
lock [1, 10, 11] occurs when software interrupts consume
excessive CPU resources, preventing other tasks from exe-
cuting and degrading network application performance. EoI
differs in that software interrupts do not monopolize the
CPU; instead, they impact applications through unmanaged
dependencies between operations running in ksoftirqd and
other applications that must complete before these opera-
tions can proceed. Priority inversion [12, 15, 18] represents
another related but distinct problem. It happens when a
lower-priority process holds a resource required by a higher-
priority process, effectively blocking the more critical task.
While EoI might appear similar, the key difference is that
in EoI , the higher-priority task (GRO in WireGuard) is not
stalled because a lower-priority task (like decryption) mo-
nopolizes resources. Instead, the higher-priority task often
preempts the lower-priority task before completion.
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8 Conclusion
Our study shows that EoI limits WireGuard’s scalability,
increasing latency, reducing throughput, and causing CPU
imbalance under load. Replacing softirqs with kernel threads
helps, but workqueues yield better performance overall. The
study underscores the importance of choosing the right
KAAPI for kernel-level applications.
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