
The Impact of Kernel Asynchronous APIs
on the Performance of a Kernel VPN

Honoré Césaire Mounah*^ Djob Mvondo*^ Julia Lawall^ David Bromberg*^
*Univ. Rennes, CNRS, IRISA

^Inria
France

9 September 2025

Context and Motivation

¹https://www.coherentmarketinsights.com/industry-reports/virtual-private-network-market

²https://surfshark.com/blog/vpn-users

Virtual Private Networks (VPNS): For
privacy and security

$68.3 Billion Market
Share (2025)¹

More than 1.75 Billions
of users²

WireGuard: modern, fast VPN in
the Linux Kernel

Is Wireguard, a multi-threaded VPN kernel module
able to handle thousands of clients efficiently?

2

Question: Does WireGuard scale?
• Evaluation:

o1,000 clients * 25Mbps = 25 Gbps generated traffic
oUse cases: Client Upload, Client Download
o25 Gbps Mellanox Connect-X 4 NIC
o18 Cores Intel Xeon Gold 5220

• Metrics
o The forwarded network throughput by the server
o The Server CPU Usage

3

Problem: WireGuard doesn't scale!
• Download use case scales well
• Upload use case doesn't scale!

o Peaks at 12 Gbps with 500 clients
o Plateaus at 4.5 Gbps (500+ clients)

• CPU usage is not 100% at 1,000 clients
o CPU is not the bottleneck
o NIC is not the bottleneck

Reception Throughput

CPU usage
4

WireGuard Linux Kernel
Implementation
• Performs:

o Traffic Encryption
o UDP Tunnelling

• Implemented on top of Linux network stack
o Leverages Generic Segmentation/Receive Offload (GSO/GRO)

• Uses Linux kernel asynchronous APIs:
o Workqueues
o Softirq

• Two pipelines:
o Transmission pipeline
o Reception pipeline

5

Transmission Pipeline

6

Reception Pipeline

7

Bottleneck is not trivial!

• Checked multiple possible reasons:
oNetwork packet distribution across CPUs

(RSS) works fine
oWorkqueues are fine, as there is no

problem in the Download use case where
transmission pipeline is sollicited

oWireGuard is multi-threaded

So what is the real problem?

Net RX Interrupts distribution

8

The Bottleneck is
Execution Order Inversion

Definition: later pipeline stages preempt earlier ones due to priority
mismatch

9

Impact of EoI

• EoI happens in 80% of all the jobs´ processing
• EoI increases latency and decreases throughput

10

Solution: Using Different
Asynchronous APIs
• Run GRO at the same priority as decryption to preserve order
• Two alternatives for GRO execution:

oKthreads (threaded NAPI)
oWorkqueues (new extension to NAPI)

• Kthreads
oEasy to deploy (config only)
oBut one thread per client -> scalability issues

• Workqueues
oRequires kernel + Wireguard changes
oFixed thread pool (per CPU) -> Scalable

11

Evaluation and Results

• Evaluation Setup:
o Testbed: 21 servers
o Intel Xeon Gold 5220 (18 cores)
o 25 Gbps NIC, Mellanox Connect-X 4
o Linux 6.1 (LTS), Debian 12

• Evaluation Scenario
o Up to 1,000 clients generating each

25Mbps of traffic upload and download
with iPerf3

• Metrics:
o Throughput, CPU Usage, 99th Tail Latency

12

Evaluation and Results:
Throughput

• In reception, with 800+ clients, throuhgput:
o remains at 12.5 Gbps with kthreads (a x2.8 Improvement)
o Scales with workqueueus up to 18.8 Gbps

▪ A x4.17 improvement
• Transmission pipeline is not impacted, which is good. 13

X4.17

Evaluation and Results:
CPU Usage

CPU Usage Per core CPU usage

14

• CPU is now fully used

Evaluation and Results:
Latency

99th Tail Latency

• Upload:
o Baseline 13.7 ms
o kthreads 5.6 ms (4.8 ms pinned, best)
o workqueue 7.3 ms.

• Download:
o Low latency overall (0.6–0.7 ms up to

500 clients)
o rises at scale (baseline 2.8 ms,

kthreads/workqueue 2.7 ms, pinned 2.0
ms, best)

Pinned kthreads consistently achieve the
lowest latency, especially under high load.

15

Takeaways

When designing a multi-threaded asynchronous application, the
choice of which execution context to use is crucial, even more so
for kernel modules.

16

	Slide 1: The Impact of Kernel Asynchronous APIs on the Performance of a Kernel VPN
	Slide 2: Context and Motivation
	Slide 3: Question: Does WireGuard scale?
	Slide 4: Problem: WireGuard doesn't scale!
	Slide 5: WireGuard Linux Kernel Implementation
	Slide 6: Transmission Pipeline
	Slide 7: Reception Pipeline
	Slide 8: Bottleneck is not trivial!
	Slide 9: The Bottleneck is Execution Order Inversion
	Slide 10: Impact of EoI
	Slide 11: Solution: Using Different Asynchronous APIs
	Slide 12: Evaluation and Results
	Slide 13: Evaluation and Results: Throughput
	Slide 14: Evaluation and Results: CPU Usage
	Slide 15: Evaluation and Results: Latency
	Slide 16: Takeaways

