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Context and Motivation

Virtual Private Networks (VPNS): For WireGuard: modern, fast VPN in
privacy and security the Linux Kernel
- - WIREGUARD
$68.3 Billion Market More than 1.75Billions ST, MODERN, SECURE VAN TuNREL
Share (2025)" of users?

Is Wireguard, a multi-threaded VPN kernel module
able to handle thousands of clients efficiently?

"https://www.coherentmarketinsights.com/industry-reports/virtual-private-network-market

*https://surfshark.com/blog/vpn-users



Question: Does WireGuard scale?

* Evaluation:
o0 1,000 clients * 25Mbps = 25 Gbps generated traffic
o Use cases: Client Upload, Client Download
0 25 Gbps Mellanox Connect-X 4 NIC
o0 18 Cores Intel Xeon Gold 5220

e Metrics

o The forwarded network throughput by the server
o The Server CPU Usage



Problem: WireGuard doesn't scale!

i S » Download use case scales well
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Z 15} * Upload use case doesn't scale!
_gﬂ 10y o Peaks at 12 Gbps with 500 clients
_E i o Plateaus at 4.5 Gbps (500+ clients)
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WireGuard Linux Kernel
Implementation

* Performs:
o Traffic Encryption
o UDP Tunnelling
* |Implemented on top of Linux network stack
o Leverages Generic Segmentation/Receive Offload (GSO/GRO)
* Uses Linux kernel asynchronous APIs:
o Workqgqueues
o Softirg
* Two pipelines:
o Transmission pipeline
o Reception pipeline
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Reception Pipeline
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Bottleneck is not trivial!

* Checked multiple possible reasons: 3 — .

o Network packet distribution across CPUs
(RSS) works fine

o Workqueues are fine, as thereis no
problem in the Download use case where
transmission pipeline is sollicited

o WireGuard is multi-threaded
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So what is the real problem?



The Bottleneck is
Execution Order Inversion

—1{ Decryption »  GRO |— Data dependency

workqueue | softirq Priority of contexts

Definition: later pipeline stages preempt earlier ones due to priority
mismatch



Impact of Eol

Ordered (Optimal): Jobs Processed = 2, Latency = 3

F1| | E2 %Y F1| |E2 %// ST

1 job pfocessed 1 job processed

Unordered: Jobs Processed = 1, Latency = 3+¢

Context G3
F1 @ | F2 ﬁ F1 %

1 job processed

Context G2

 Eolhappensin 80% of all the jobs ™ processing
* Eolincreases latency and decreases throughput



Solution: Using Different
Asynchronous APls

* Run GRO at the same priority as decryption to preserve order

* Two alternatives for GRO execution:
o Kthreads (threaded NAPI)
o Workgueues (new extension to NAPI)

e Kthreads

o Easy to deploy (config only)
o But one thread per client -> scalability issues

* Workgueues

o Requires kernel + Wireguard changes
o Fixed thread pool (per CPU) -> Scalable
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Evaluation and Results

* Evaluation Setup:
o Testbed: 21 servers
o Intel Xeon Gold 5220 (18 cores)
o 25 Gbps NIC, Mellanox Connect-X 4
o Linux 6.1 (LTS), Debian 12

e Evaluation Scenario

o Up to 1,000 clients generating each
25Mbps of traffic upload and download
with iPerf3

e Metrics:
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Evaluation and Results:
Throughput
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* In reception, with 800+ clients, throuhgput:
o remains at 12.5 Gbps with kthreads (a x2.8 Improvement)
o Scales with workqueueus up to 18.8 Gbps
= Ax4.17 improvement
* Transmission pipeline is not impacted, which is good.
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Evaluation and Results:
CPU Usage
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e CPUis now fully used
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Evaluation and Results:

Latency

e Upload:

o Baseline 13.7 ms
o kthreads 5.6 ms (4.8 ms pinned, best)
o workqueue 7.3 ms.

e Download:

o Low latency overall (0.6-0.7 ms up to

500 clients)

o rises at scale (baseline 2.8 ms,
kthreads/workqueue 2.7 ms, pinned 2.0

ms, best)

Pinned kthreads consistently achieve the
lowest latency, especially under high load.
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Takeaways

When designing a multi-threaded asynchronous application, the
choice of which execution context to use is crucial, even more so
for kernel modules.
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