Crreia —

f@ \\/(Université @
IRISA de Rennes

The Impact of Kernel Asynchronous APls
on the Performance of a Kernel VPN

Honoré Césaire Mounah** Djob Mvondo*” Julia Lawall® David Bromberg*”"
*Univ. Rennes, CNRS, IRISA
*nria
France

9 September 2025

Context and Motivation

Virtual Private Networks (VPNS): For WireGuard: modern, fast VPN in
privacy and security the Linux Kernel
- - WIREGUARD
$68.3 Billion Market More than 1.75Billions ST, MODERN, SECURE VAN TuNREL
Share (2025)" of users?

Is Wireguard, a multi-threaded VPN kernel module
able to handle thousands of clients efficiently?

"https://www.coherentmarketinsights.com/industry-reports/virtual-private-network-market

*https://surfshark.com/blog/vpn-users

Question: Does WireGuard scale?

* Evaluation:
o0 1,000 clients * 25Mbps = 25 Gbps generated traffic
o Use cases: Client Upload, Client Download
0 25 Gbps Mellanox Connect-X 4 NIC
o0 18 Cores Intel Xeon Gold 5220

e Metrics

o The forwarded network throughput by the server
o The Server CPU Usage

Problem: WireGuard doesn't scale!

i S » Download use case scales well
20}]
i
Z 15} * Upload use case doesn't scale!
_gﬂ 10y o Peaks at 12 Gbps with 500 clients
_E i o Plateaus at 4.5 Gbps (500+ clients)

0

0 200 a0 o0 800 1000 » CPU usage is not 100% at 1,000 clients
o CPU s not the bottleneck
o NIC is not the bottleneck

Reception Throughput

100 e
Hl sys
75t B softirq |
50
251]
R

SN OO — <t ~QO o
== AN onen

core

CPU usage

WireGuard Linux Kernel
Implementation

* Performs:
o Traffic Encryption
o UDP Tunnelling
* |Implemented on top of Linux network stack
o Leverages Generic Segmentation/Receive Offload (GSO/GRO)
* Uses Linux kernel asynchronous APIs:
o Workqgqueues
o Softirg
* Two pipelines:
o Transmission pipeline
o Reception pipeline

Transmission Pipeline

Segmentation

—

Encryption

1 Encapsulation

netdevice
xmit callback

Workqueue

Workqueue

Reception Pipeline

De-encapsulation

) A

Decryption

GRO

UDP Socket
Callback

workqueue

ksoftirqd

Bottleneck is not trivial!

* Checked multiple possible reasons: 3 — .

o Network packet distribution across CPUs
(RSS) works fine

o Workqueues are fine, as thereis no
problem in the Download use case where
transmission pipeline is sollicited

o WireGuard is multi-threaded

@)}

=_

Interrupts per Second
I

0

SN OAAANNL — <O cnn
— o — N AN N cNen

Net RX Interrupts distribution

So what is the real problem?

The Bottleneck is
Execution Order Inversion

—1{ Decryption » GRO |— Data dependency

workqueue | softirq Priority of contexts

Definition: later pipeline stages preempt earlier ones due to priority
mismatch

Impact of Eol

Ordered (Optimal): Jobs Processed = 2, Latency = 3

F1| | E2 %Y F1| |E2 %// ST

1 job pfocessed 1 job processed

Unordered: Jobs Processed = 1, Latency = 3+¢

Context G3
F1 @ | F2 ﬁ F1 %

1 job processed

Context G2

 Eolhappensin 80% of all the jobs ™ processing
* Eolincreases latency and decreases throughput

Solution: Using Different
Asynchronous APls

* Run GRO at the same priority as decryption to preserve order

* Two alternatives for GRO execution:
o Kthreads (threaded NAPI)
o Workgueues (new extension to NAPI)

e Kthreads

o Easy to deploy (config only)
o But one thread per client -> scalability issues

* Workgueues

o Requires kernel + Wireguard changes
o Fixed thread pool (per CPU) -> Scalable

11

Evaluation and Results

* Evaluation Setup:
o Testbed: 21 servers
o Intel Xeon Gold 5220 (18 cores)
o 25 Gbps NIC, Mellanox Connect-X 4
o Linux 6.1 (LTS), Debian 12

e Evaluation Scenario

o Up to 1,000 clients generating each
25Mbps of traffic upload and download
with iPerf3

e Metrics:

Client egpy

@ Physical NIC Interface

Network Traffic

D Physical machine

. Wireguard Interface

Client Machine M.,

30 Mbps

Cliente; [>>l——

Client c1gp D‘*.mps

3 Ghps

Client M achinie M.,

> ’-SOMbps

30

Wireguard Server

3 Gbps

1

|> Netperf Client

D Netperf Server

Target Machine My,

) Target t

D Target t1gg

Target M m::hme My,

‘ —»)) Target tog

‘ ’E) Target t1000

o Throughput, CPU Usage, 99th Tail Latency

12

Evaluation and Results:
Throughput

g 25 'I—)'(— L"»a;iciinle I(S‘oftir.q)I — 1 ,%: 25 y I—)l(—]l’;a;;ellinle I(Sluf‘tirlq)I -
@ =® = Threaded 8 =@ = Threaded
— 20 | == Threaded-pinned 4_ - 20 b i Threaded-pinned
o v i I TR
\.: 15¢ = ®= Workqueues PR 1 \: 15¢F = @= Workqueues

X417 & ol 3

° _%n 10 _%D 10+
= 5L 8 5F
E 1 E 1
= Ot ‘ L - . =) . . L - L]
0 200 400 600 800 1000 0 200 400 600 800 1000
Clients Clients
(a) Reception (b) Transmission

* In reception, with 800+ clients, throuhgput:
o remains at 12.5 Gbps with kthreads (a x2.8 Improvement)
o Scales with workqueueus up to 18.8 Gbps
= Ax4.17 improvement
* Transmission pipeline is not impacted, which is good.

13

Evaluation and Results:
CPU Usage

gﬂ 100 I,'h“.-:-‘"i—-.i gﬂ 100 ‘—i'(—]I3asf:linf:‘(Softirq)I o o ‘-‘ Sy; ; 100

S 30} . g 80 =®= Threaded . 75t I softirq | 75

2 e == Threaded-pinned

d": 60+ d"j 60F e Workqueues

% 40 e BaseWne (Softirg) g[) 40 50 _] 50

E 20+ : iz::de Spin E 20+ 25¢] 25
= @= Workqueues , | | , | |I I | I

5 0 ST SN S S N 11111 T

0 200 400 600 800 1000

0

) 00 o~ sa'g) ONOAANNWV 0 — <t~ N

Om@@c_ﬂ__agmgmm ——— N N e
C

Clients Clients core ore
(a) Reception (b) Transmission (a) Baseline (softirq) (b) kthreads/workqueues
CPU Usage Per core CPU usage

e CPUis now fully used

14

Evaluation and Results:

Latency

e Upload:

o Baseline 13.7 ms
o kthreads 5.6 ms (4.8 ms pinned, best)
o workqueue 7.3 ms.

e Download:

o Low latency overall (0.6-0.7 ms up to

500 clients)

o rises at scale (baseline 2.8 ms,
kthreads/workqueue 2.7 ms, pinned 2.0

ms, best)

Pinned kthreads consistently achieve the
lowest latency, especially under high load.

s 125 _Iﬂ— L‘%aseline :{Softirq)l | 1 - 125 _| ' Iﬂ'!-]_;'aseline;Softirq)l]
<2 =® = Threaded wl =@ = Threaded
E 10.0F == Threaded-pinned] E 10.0¢f =@= Threaded-pinned]
= 75¢ = ®= Workqueues] = 75t = @= Workqueues
0.0& ‘ | . | . 0.0 bl ek St sl —'/
0 200 400 600 800 1000 0 200 400 600 800 1000
Clients Clients
(a) Client upload (b) Client download

99th Tail Latency

15

Takeaways

When designing a multi-threaded asynchronous application, the
choice of which execution context to use is crucial, even more so
for kernel modules.

16

	Slide 1: The Impact of Kernel Asynchronous APIs on the Performance of a Kernel VPN
	Slide 2: Context and Motivation
	Slide 3: Question: Does WireGuard scale?
	Slide 4: Problem: WireGuard doesn't scale!
	Slide 5: WireGuard Linux Kernel Implementation
	Slide 6: Transmission Pipeline
	Slide 7: Reception Pipeline
	Slide 8: Bottleneck is not trivial!
	Slide 9: The Bottleneck is Execution Order Inversion
	Slide 10: Impact of EoI
	Slide 11: Solution: Using Different Asynchronous APIs
	Slide 12: Evaluation and Results
	Slide 13: Evaluation and Results: Throughput
	Slide 14: Evaluation and Results: CPU Usage
	Slide 15: Evaluation and Results: Latency
	Slide 16: Takeaways

